
	 JULY/AUGUST 2024 | IEEE SOFTWARE � 143

FOCUS: LESSONS LEARNED IN DevOps

This work is l icensed under a Creat ive
Commons At t r ibut ion 4.0 L icense. For more informat ion,
see ht tps://creat ivecommons.org/ l icenses/by/4.0/

FEATURE: TAXING COLLABORATIVE SOFTWARE ENGINEERING

// The engineering of

complex software systems

is often the result of a

highly collaborative effort.

However, collaboration

within a multinational

enterprise has an

overlooked legal implication

when developers

collaborate across national

borders: It is taxable. In

this article, we discuss

the unsolved problem

of taxing collaborative

software engineering

across borders. //

He’s spending a year dead for
tax reasons.

—Douglas Adams, The
Hitchhiker’s Guide

to the Galaxy

MODERN SOFTWARE SYSTEMS
are often too large, too complex, and
evolving too fast for single developers
to oversee. Therefore, software engi-
neering has become highly collabora-
tive. Further, software development
is often a joint effort of individuals
and teams collaborating across bor-
ders, especially in multinational com-
panies with their subsidiaries spread
around the globe.1 However, collab-
oration has a legal implication if in-
dividuals collaborate across borders:
The profits from those cross-border
collaborations become taxable.

Introduction
In this article, we describe the complex-
ity of applying the established interna-
tional taxation standards required and

Taxing
Collaborative
Software
Engineering
The Challenges for Tax
Compliance in Software
Engineering

Michael Dorner , Blekinge Institute of Technology

Maximilian Capraro , Oliver Treidler, and Tom-Eric Kunz, Kolabri

Darja Šmite and Ehsan Zabardast , Blekinge Institute of
Technology

Daniel Mendez , Blekinge Institute of Technology and fortiss

Krzysztof Wnuk , Blekinge Institute of Technology

Digital Object Identifier 10.1109/MS.2023.3346646
Date of publication 25 December 2023; date of current version 12 June 2024.

©SHUTTERSTOCK.COM/JULSIST

https://orcid.org/0000-0001-8879-6450
https://orcid.org/0000-0002-7598-6615
https://orcid.org/0000-0003-1744-3118
https://orcid.org/0000-0002-1729-5154
https://orcid.org/0000-0003-0619-6027
https://orcid.org/0000-0003-3567-9300

144	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: TAXING COLLABORATIVE SOFTWARE ENGINEERING

enforced by national tax authorities in
the context of modern software engi-
neering, with its distributed and fine-
grained collaboration crossing borders.
We start with a gentle introduction
to international standards in multi-
national taxation and its basic arm’s
length principle for software engineers.
We then discuss the challenges of tax-
ing collaborative software engineering
and illustrate the industrial significance
of cross-border collaboration in an in-
dustrial case, namely code review.

Taxation in software industry has
been debated for many decades.2 The
problem with taxing the final result of
software engineering—the software
product or service, for example—
has been shown to be challenging to
tackle and is still subject to ongoing
and broad discussion.3 Here, we ex-
tend the debate to software engineer-
ing, the way the software products
and services are being developed,
which has not yet been covered. Our
goal is to raise a debate and draw
attention to this problem among a
software engineering audience. For
in-depth information on basic trans-
fer pricing concepts, including stan-
dard methods and tax compliance
requirements, we recommend the in-
terested reader to further readings.4

A Gentle Introduction
to Taxing Multinational
Enterprise for Software
Engineers
Consider devnullsoft Group, a mul-
tinational enterprise that develops
and sells a software-intensive prod-
uct, which has two legal entities:
devnullsoft GmbH in Germany and
its subsidiary devnullsoft AB in Swe-
den. The German development team
employed by devnullsoft GmbH
develops the software-intensive
product jointly with the Swedish de-
velopment team employed by the

Swedish subsidiary devnullsoft AB.
The German devnullsoft GmbH sells
this resulting product to customers.

Without any further consideration,
solely the German devnullsoft GmbH
generates profits, which are then fully
taxed in Germany according to Ger-
man law. The Swedish tax authori-
ties are left out in the cold because
devnullsoft AB has no share of the
profit that could be taxed in Sweden,
although devnullsoft AB contributed
significantly to the product through
code contributions, code reviews, bug
reports, tests, architectural decisions,
or other contributions that made the
success of the software possible.

To avoid this scenario and to pro-
vide a common ground for interna-
tional taxation, reducing uncertainty
for multinational enterprises, and pre-
venting tax avoidance through profit
shifting, nearly all countries in the
world agreed on and implemented the
so-called arm’s length principle, as
defined in the OECD Transfer Pric-
ing Guidelines for Multinational En-
terprises and Tax Administrations.5

The arm’s length principle is the
guiding principle and the de facto
standard for the taxation of mul-
tinational enterprises that requires
associated enterprises to operate as
if they were not associated and regu-
lar participants in the market from a
taxation perspective. This principle
ensures that transfer prices between
associated companies of multinational
enterprises are established on a market
value basis and not misused for profit
shifts from high to low tax regions.

To comply with the arm’s length
principle, devnullsoft GmbH in
Germany and devnullsoft AB in Swe-
den need to operate from a taxation
perspective as if they were not asso-
ciated. Since a regular participant in
the market would not provide code
contributions, code reviews, tests, or

architectural designs or other con-
tributions free of charge to a closed-
source software project, devnullsoft
GmbH in Germany needs to pay for
the received contributions, the so-
called transfer price.

Transfer prices are the prices at
which an enterprise transfers physi-
cal goods and intangibles or provides
services to associated enterprises.
Since software is intangible itself, the
transfer of intangibles, like source
code, code reviews, bug reports,
etc., is our focal point. This trans-
fer price guarantees that devnullsoft
AB gets its share of the profit, which
then can be taxed by the Swedish
tax authorities.

In Figure 1, we provide a sche-
matic overview of transfer pricing
between the two associated software
companies from our example. Al-
though devnullsoft AB contributed
significantly to the software-intensive
product, without a transfer price,
devnullsoft AB has no share of profits;
all profits are fully taxable in Germany
only. However, if devnullsoft GmbH
in Germany pays a transfer price re-
flecting the value for the services and
intangible properties received from
its Swedish associated enterprise,
devnullsoft AB realizes profits that
then are taxable in Sweden.

In our case, the devnullsoft Group
does not artificially shift profits
to a tax haven. Yet, one can easily
imagine that neglecting to charge
arm’s length prices can be intention-
ally misused for profit-shifting.
Therefore, the Organisation for Eco-
nomic Co-operation and Develop-
ment (OECD) guidelines permit tax
authorities like the Swedish tax au-
thority to adjust the transfer price
where the prices charged are out-
side an arm’s length range. Such an
adjustment will carry interest and
might be coupled with penalties. In

	 JULY/AUGUST 2024 | IEEE SOFTWARE � 145

the wake of the OECD’s Base Ero-
sion and Profit Shifting Project (com-
pare https://www.oecd.org/tax/beps)
the regulatory framework has be-
come considerably stricter at an in-
ternational and national level. As a
result, tax authorities can demand
more comprehensive information to
detect misalignments and enforce tax
adjustments. From the companies’
perspective, its software development
may be—intentionally or uninten-
tionally—noncompliant and face the
risk of being legally prosecuted.

Challenges
So, what are transfer prices for col-
laborative software engineering that
comply with this arm’s length prin-
ciple? Determining a market price
for intangibles is inherently diffi-
cult and is reflected in a broad price
range. Collaborative software engi-
neering, however, scales the problem
of a transfer price determination to
a new level of complexity because

the reality of modern software en-
gineering is significantly more com-
plex than our introductory example
above may suggest. Since transfer
price regulations apply to a much
broader definition of intangibles
compared to accounting standards,
the latter cannot be used as a reli-
able measure of value for transfer
pricing purposes.5

In the following, we discuss three
main high-level challenges for trans-
fer pricing in collaborative software
engineering within multinational
enterprises. Figure 2 highlights the
complexity in modern collaborative
software engineering at devnullsoft
Group and where those three chal-
lenges apply.

Challenge 1: What is a taxable
transaction in software engineering?
The trouble for transfer pricing in
software engineering begins with a
fundamental question: What is ac-
tually a taxable transaction in the

context of collaborative software
engineering? We simply do not know
what types or characteristic types
or characteristics classify a taxable
exchange of intangibles or services
across the boundaries of a country in
the context of software engineering.

Among other potentially relevant
types of taxable intangibles, such
as goodwill or group synergies, we
discuss in this and the following
subsections two types of intangibles
that are highly relevant for software
engineering: know-how and licenses.

The OECD Transfer Pricing Guide-
lines define know-how as the “propri-
etary information or knowledge that
assist[s] or improve[s] a commercial
activity, but that [is] not registered for
protection in the manner of a patent
or trademark.” The commercial activ-
ity includes the manufacturing, mar-
keting, research, and development of
and for a software system.

Does the OECD definition imply
that all types of information exchanged

FIGURE 1. A schematic overview of the necessity and mechanics of transfer pricing in a multinational enterprise (devnullsoft

Group) with two associated software companies (devnullsoft AB in Sweden and devnullsoft GmbH in Germany): Without considering

a market-based compensation, the so-called transfer price, devnullsoft AB has no share on the profits that could be taxed by the

Swedish tax authorities; all profits are with devnullsoft GmbH and, therefore, all taxes stay within Germany.

Swedish Jurisdiction German Jurisdiction

devnullsoft Group

Swedish
Tax Authorities

German
Tax Authorities

devnullsoft AB devnullsoft GmbH Customer

Tax on Profits Tax on Profits

Contributions

Transfer Price

Software-
Intensive
Product

Revenue

https://www.oecd.org/tax/beps

146	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: TAXING COLLABORATIVE SOFTWARE ENGINEERING

during collaborative software engineer-
ing are know-how? On the one hand,
yes, since all information is propri-
etary and, to some extent, contributes
to the software being developed or
its engineering processes. But on the
other hand, how do we know which
information assists or improves the
commercial activity, meaning the en-
gineering of the software system, over
time? For example, a quick and dirty
bug fix without sufficient documenta-
tion or testing may improve the soft-
ware system in the present but makes
changes more costly or even impossible
in the future. Making such suboptimal
decisions leads to incurring technical
debt,6 which is potentially relevant for
taxation. Developing the concept of
technical debt further, we have begun
to understand that similar to physical,
tangible assets, software assets degrade

and lose value inevitably due to in-
tentional or unintentional decisions
caused by technical or nontechnical
manipulation of the asset or associated
assets during all stages of the product
life cycle.7 Such an asset degradation
will also be of great interest from a tax-
ation perspective.

The second type of intangibles
highly relevant to transfer pricing in
software engineering if transferred
across borders is licenses. Although
maybe not even explicit, the company-
internal use and reuse of components
is an instance of licensing. Complex
software systems are not monolithic
blocks of code but consist of compo-
nents that are developed, shared, and
reused by separate teams. However,
we lack a common understanding of
software components and reuse in
software engineering for taxation. Not

every component is directly used for
or in a software-intensive product, but
maybe adds value to the product. For
example, a well-engineered continuous
integration/continuous delivery pipe-
line accelerates the development cycles
and brings new features or bug fixes
faster to the customers.8 Furthermore,
it is also not always clear who owns,
contributes to, or uses a component
within a company, and the roles may
even change over time.9 In contrast to
open source, the reuse is often implicit,
lacking a company-wide license agree-
ment that clarifies the responsibility
and accountability between compo-
nent owners and users. Even worse, we
do not even know if our definition and
understanding of code ownership10
suffices the definition of ownership in
a taxation context.

Additionally, we see an inter-
play between those two types of in-
tangibles, know-how and licensing,
since they may be two sides of the
same collaboration: for example,
when code contributions from the
component user support instance
of reuse.

Insight. Identifying the taxable transac-
tions requires either a holistic perspec-
tive of software engineering or at least
suitable, practical, and accurate prox-
ies. Compliant software engineering
needs a common understanding and
a taxonomy of taxable transactions
specific to software engineering.

Challenge 2: How to track
cross-border transactions in
software engineering?
The practical tracking of taxable
know-how and licensing (and poten-
tially other types of intangibles) is a
challenge on its own.

Tracking know-how is an inher-
ently difficult task. Since the teams
collaborating are no longer co-located,

FIGURE 2. A schematic overview of collaborative software engineering and three

challenges for transfer pricing specific to software engineering.

devnullsoft AB devnullsoft GmbH

Software System

d1

d2

d3

d4

d5

d6

d7

d8

d9

Developer
Software Component
Reused Software Component
Taxable Transaction
Nontaxable Transaction

1
What is a taxable transaction
in software engineering? 2 How to track taxable transactions?

3 How to value taxable transactions?

	 JULY/AUGUST 2024 | IEEE SOFTWARE � 147

numerous tools enable an exchange of
know-how in software engineering.
Those tools are suitable as rich data
sources to different extents: While
domain-specific tools like issue track-
ers or collaborative software develop-
ment platforms like GitHub or Gitlab
often track the exchanges very thor-
oughly, other communication and
collaboration tools do not: Online
meetings, for example, can facilitate
an exchange of taxable intangibles,
but this exchange is not tracked by
any tool. But even if there is a rich
data basis available, leveraging those
data sources is problematic for the fol-
lowing reasons:

•	 Establishing location: It can be
difficult to establish the location
of collaborators or capture when
a location of a collaborator has
changed, because organizations
often preserve only the latest
version of the organizational
structures.

•	 Privacy: Analyzing the complete
communication of developers
may be perceived as a measure of
surveillance, which raises ethical
and legal concerns related
to privacy.

In contrast to the potentially rich
sources for tracing taxable transac-
tions from collaboration tools used
in software engineering, tracking
company-internal reuse often lacks
a solid data basis. Although compa-
nies often track the reuse of external
open source components for open
source license compliance purposes,
those tools are rarely used or suitable
for tracking company-internal reuse.
Also, only reuse that crosses borders
is taxable information that is often
not available or stored over time, al-
though component ownership is not
static and may be subject to change.

Insight. Data for tracking taxable trans-
actions may be incomplete, faulty with
respect to location, or restricted.
There is no dedicated tool support
yet for the practical transfer price
determination.

Challenge 3: How to value taxable
transactions in software engineering?
While it is inherently difficult to tax
intangibles in general, things are
even more complicated in software
engineering. Potentially taxable intan-
gibles cover a large range of granu-
larity in software engineering: They
may be as large as a microservice
providing user authentication used
by microservices of other teams ("
intangible licenses) or as small as a
code change, code review, or bug
report (" intangible know-how).
Although the code change or feed-
back in a code review is small—
maybe even only one line of code,
like in the case of the Heartbleed
security bug in the OpenSSL cryp-
tography library from 201411—the
potential impact on the software
system can be tremendous or even
fatal. A software change or a code
review delivers value through im-
pact, not size.

The same applies to licensing.
The number of use relations of a
software component or its size (how-
ever defined) does not reflect the
value provided to the software-in-
tensive product. While the software
component for user authentication
may be important for operating the
software-intensive product and,
therefore, has a large amount of de-
pedent software components, it is
not differentiating and may even be
considered a commodity.

This means we cannot simply use
purely quantitative measurements
for transfer pricing. However, the
sheer mass of small, fine-grained

transactions of all types makes a hu-
man qualitative case-by-case evalu-
ation impossible.

Insight. A purely quantitative valuing
can hardly reflect the value of trans-
actions; however, a purely qualitative
assessment does not scale with the
magnitude of cross-border transac-
tions in modern software development.

An Industrial Example
of Cross-Border
Collaboration
So, is cross-border collaboration, and
therefore, also the taxation of it, a
real issue? To estimate the prevalence
of cross-border collaboration, we
measure cross-border code reviews as
proxy for cross-border collaboration
in a typical industrial setting.

A cross-border code review is code
review with participants from more
than one country. Although it origi-
nated in collocated, waterfall-like
code inspections, its modern stances
are lightweight and asynchronous
discussions among developers around
a code change. Different tools are in
use, for example, Gerrit or Github
and Gitlab with their implementa-
tion of code review as so-called pull
and merge requests, respectively. Al-
though code review is by far not the
only type of collaboration that may
include taxable transactions and is
also likely not sufficient to deter-
mine company-wide transfer prices,
the following characteristics make
code review a suitable first proxy for
cross-border collaboration:

•	 More than code only: Code
review not only includes the ac-
tual code change and its authors
but also includes the feedback
from reviewers that may have
formed or changed the code
change significantly but is no

148	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: TAXING COLLABORATIVE SOFTWARE ENGINEERING

longer visible in the repository
after merging the code change
into the code base. Therefore,
our proxy goes beyond existing
code-based measurements for
collaboration.12

•	 Accessible and complete: The
code review discussions are
(company-internally) public by
default and are, thus, acces-
sible. Unlike other tools, like
instant messaging services or e-
mail, code review does not split
into public and private, whose
analysis may cause privacy
concerns.

•	 Persistent: Code review tools are
the backbone of modern code
review and ease data extraction.
Other types of code review (for
example, private or synchronous
discussion around a code change
through meetings or instant
messaging) may not be captured
through the tooling, though.

We measured the share of cross-
border code reviews at a multinational

company delivering software and re-
lated services worldwide with main
R&D locations in three countries.
For many years the company has
tried to allocate products to particu-
lar sites to avoid the burden of cross-
border collaboration. However, our
analysis shows that developers repre-
sent more than 25 locations because
the new corporate work flexibility
policy permits relocations.13 The
company uses a single, central, and
company-wide tool for its internal
software development and code re-
view. Understandably, our case com-
pany wants to remain anonymous.
Therefore, we are not able to de-
scribe the case any further. However,
we believe that our case company is
exemplary for a multinational enter-
prise developing software.

From the code review tool, we
extracted all code reviews that were
completed in 2019, 2020, 2021,
and 2022, including their activities.
All bot activities were removed and
were not considered in our analy-
sis. We then modeled code reviews

as communication channels among
code review participants.14 We con-
sider a code review as a discussion
thread that is completed as soon
as no more information regard-
ing a particular code change is ex-
changed (i.e., the code review is
closed). We complement each code
review participant with the infor-
mation of the country of the em-
ploying subsidiaries at the time of
the code review.

We provide a replication pack-
age to reproduce our results for
any GitHub enterprise instance (see
https://github.com/michaeldorner/
tax_se). Due to the sensitive topic,
we are not able to share our data.

Figure 3 shows an increase in
relative cross-border code reviews
over time. The share of cross-border
code reviews was between 6% and
10% in 2019 and 2020. Yet, we see
a further steep increase reaching
between 25% and 30% at the end
of 2022.

Interestingly, 6% of all cross-bor-
der code reviews involve participants
from more than two countries. This
means transfer pricing in collabora-
tive software engineering becomes
not only a bilateral but a multilat-
eral problem with not only two but
multiple—in our case company up to
six—different jurisdictions and tax
authorities involved in the transfer
pricing process.

Although the share of cross-bor-
der collaboration may vary among
companies, yet, our findings suggest
that—through the proxy of cross-
border code reviews—cross-border
collaboration becomes a significant
part of daily life in multinational
software companies. It is fair to as-
sume that a further increase in cross-
border collaborations in software
engineering will draw the attention
of tax authorities.

FIGURE 3. The share of cross-border code review at our case company in the

years 2019, 2020, 2021 and 2022 (black line) monthly sampled. Since not all historical

locations of all code review participants could be reliably retrieved, the share of cross-

border reviews could be more significant (indicated by the red area).

2019 2020 2021 2022 2023

5

10

15

20

25

30

C
ro

ss
-B

or
de

r
C

od
e

R
ev

ie
w

s
(%

)

Retrievable Location
Estimated Location

https://github.com/michaeldorner/tax_se
https://github.com/michaeldorner/tax_se

	 JULY/AUGUST 2024 | IEEE SOFTWARE � 149

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MICHAEL DORNER is a researcher and

doctoral student in software engineering at

the Blekinge Institute of Technology, 371 41

Karlskrona, Sweden. His primary research

focus is to understand, measure, and leverage

communication networks in software engineer-

ing and their technical, organizational, and legal

implications for software engineering. Dorner

received his master's degree in computer

science from Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany. Contact him at

michael.dorner@bth.se.

DARJA ŠMITE is a professor of software engi-

neering at the Blekinge Institute of Technology,

371 41 Karlskrona, Sweden. She is also a part

time research scientist at SINTEF, Norway. Her

research interests include WFH, virtual teams,

large-scale agile software development, team

performance, and organizational decentral-

ization, with a focus on globally distributed

software development, outsourcing, and

remote and hybrid work. Contact her at darja.

smite@bth.se.

MAXIMILIAN CAPRARO is a cofounder

and director at Kolabri, Germany. Capraro

received his Ph.D. in computer science from

Friedrich-Alexander-Universität Erlangen-

Nürnberg, Germany. He is a (part-time) engineer

at DATEV and a co-founding member of the

InnerSource Commons Foundation, where he

advocates for collaborative software develop-

ment practices. Contact him at max@kolabri.io

EHSAN ZABARDAST is a senior researcher

in software engineering at the Blekinge Institute

of Technology, 371 41 Karlskrona, Sweden.

His research interests include software assets,

asset management and degradation, developer

ownership and contribution, technical debt, and

software architecture. Zabardast received his

master’s degree in medical informatics. Contact

him at ehsan.zabardast@bth.se.

OLIVER TREIDLER is a cofounder and

director at Kolabri, Germany. His research

interests include transfer pricing and risk

management. Treidler received his Ph.D.

in economics from the University of Würz-

burg, Germany. Contact him at oliver@

kolabri.io.

DANIEL MENDEZ is a full professor of

software engineering at the Blekinge Institute

of Technology, 371 41 Karlskrona, Sweden, and

fortiss, 80805 Munich, Germany and a senior

scientist at Fortiss, the research institute of the

Free State of Bavaria for software-intensive sys-

tems and services. His research interests include

empirical software engineering, and his focus

is on interdisciplinary research in requirements

engineering and its quality improvement. Contact

him at daniel.mendez@bth.se.

TOM-ERIC KUNZ is a cofounder and di-

rector at Kolabri, Germany, and a research

assistant at the faculty of economics of the

European University Viadrina pursuing a

doctoral degree at the Institute for Central

and East European Taxation. Kunz received

his M.Sc. in international business ad-

ministration from the European University

Viadrina, Germany. Contact him at tom@

kolabri.io.

KRZYSZTOF WNUK is a professor of software

engineering at the Blekinge Institute of Technol-

ogy, 371 41 Karlskrona, Sweden. His research

interests include market-driven software

development, requirements engineering, soft-

ware product management, decision-making in

requirements engineering, large-scale software,

system and requirements engineering and

management, and empirical research methods.

He is also interested in software business, open

innovation, and open-source software. He is an

expert consultant in software engineering for

the Swedish software industry. Wnuk received

his Ph.D. from Lund University, Sweden.

Contact him at krzysztof.wnuk@bth.se.

mailto:michael.dorner@bth.se
mailto:darja.smite@bth.se
mailto:darja.smite@bth.se
mailto:max@kolabri.io
mailto:ehsan.zabardast@bth.se
mailto:oliver@kolabri.io
mailto:oliver@kolabri.io
mailto:daniel.mendez@bth.se
mailto:tom@kolabri.io
mailto:tom@kolabri.io
mailto:krzysztof.wnuk@bth.se

150	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: TAXING COLLABORATIVE SOFTWARE ENGINEERING

O n the one hand, the arm’s
length principle is the de
facto standard for multi-

national enterprises that any multi-
national company must comply with.
On the other hand, software engi-
neering is highly collaborative, be-
yond geographical and organizational
boundaries. Determining a reason-
able transfer price for this cross-bor-
der collaboration brings the general
challenge of taxing intangibles to a
new level of complexity.

Pretending to be dead for tax rea-
sons is no option because ignoring
the significant cross-border collabo-
ration in modern software develop-
ment, as we exemplarily found, is a
slippery slope: Cross-border collabo-
rations in software engineering will
draw the attention of tax authorities.
Also, ceasing or forbidding all cross-
border collaboration in software
engineering is not a valid solution:
Reversing the collaborative nature
of modern software engineering is
likely too costly and takes too long.

Obviously, there are neither simple
solutions for such a complex and inter-
disciplinary problem, nor a single arti-
cle that can solve this complex problem
potentially affecting every software-
developing company with developers
employed by subsidiaries in more than
one country. However, our article aims
to bring this eminent and unsolved
problem of taxing collaborative soft-
ware engineering to the audience that
can solve this issue. As a software en-
gineering community, we will need to
find a common understanding of what
constitutes taxable transactions, and
each company that develops software
collaboratively within more than one
country needs to learn how to track
and value cross-border collaboration,
how to estimate the transfer pricing,
and how to report these to the tax au-
thorities to be compliant.

Acknowledgment
We thank our industry partner for
providing the data for this study and
for their support in interpreting the
results, and the anonymous reviewers
for their fruitful feedback. This work
was supported by the Stiftelsen för
kunskaps- och kompetensutveckling
(KKS Foundation) through the Soft-
ware Engineering ReThought (SERT)
project (Research Profile Grant
2018/010) at the Blekinge Institute
of Technology.

References
	 1.	J. D. Herbsleb and D. Moitra, “Global

software development,” IEEE Softw.,

vol. 18, no. 2, pp. 16–20, Mar./Apr.

2001, doi: 10.1109/52.914732.

	 2.	“Addressing the tax challenges of the

digital economy, action 1 - 2015 final

report,” OECD, Paris, France, 2015.

[Online], Available: https://www.

oecd.org/tax/addressing-the-tax

-challenges-of-the-digital-economy

-action-1-2015-final-report

-9789264241046-en.htm

	 3.	M. Olbert and C. Spengel, “Interna-

tional taxation in the digital economy:

Challenge accepted?” World Tax J.,

vol. 9, no. 1, pp. 3–46, 2017, doi:

10.59403/2y70g6v.

	 4.	O. Treidler, Transfer Pricing in One

Lesson. Cham, Switzerland: Springer

International Publishing, 2020.

	 5.	“OECD transfer pricing guidelines

for multinational enterprises and tax

administrations 2022,” OECD, Paris,

France, 2022. [Online], Available:

https://www.oecd.org/tax/transfer

-pricing/oecd-transfer-pricing

-guidelines-for-multinational

-enterprises-and-tax-administrations

-20769717.htm

	 6.	N. Rios, M. G. d. Mendonça Neto, and

R. O. Spínola, “A tertiary study on tech-

nical debt: Types, management strategies,

research trends, and base information

for practitioners,” Inf. Softw. Technol.,

vol. 102, pp. 117–145, Oct. 2018,

doi: 10.1016/j.infsof.2018.05.010.

	 7.	E. Zabardast et al., “Assets in soft-

ware engineering: What are they

after all?” J. Syst. Softw., vol. 193,

Nov. 2022, Art. no. 111485, doi:

10.1016/j.jss.2022.111485.

	 8.	B. Fitzgerald and K.-J. Stol, “Con-

tinuous software engineering: A

roadmap and agenda,” J. Syst. Softw.,

vol. 123, pp. 176–189, Jan. 2017. doi:

10.1016/j.jss.2015.06.063.

	 9.	E. Zabardast, J. Gonzalez-Huerta,

and B. Tanveer, “Ownership vs con-

tribution: Investigating the alignment

between ownership and contribu-

tion,” in Proc. IEEE 19th Int. Conf.

Softw. Archit. Companion (ICSA-C),

Mar. 2022, pp. 30–34, doi: 10.1109/

ICSA-C54293.2022.00013.

	10.	M. E. Nordberg, “Managing code

ownership,” IEEE Softw. , vol. 20,

no. 2, pp. 26–33, Mar. 2, 2003, doi:

10.1109/MS.2003.1184163.

	11.	M. Carvalho et al., “Heartbleed

101,” IEEE Security Privacy, vol.

12, no. 4, pp. 63–67, Jul. 2014, doi:

10.1109/MSP.2014.66.

	12.	M. Capraro, M. Dorner, and D. Riehle,

“The patch-flow method for measuring

inner source collaboration,” in Proc.

IEEE/ACM 15th Int. Conf. Mining

Softw. Repositories (MSR) New York,

NY, USA: ACM Press, 2018, pp. 515–

525, doi: 10.1145/3196398.3196417.

	13.	D. Smite et al., “Work-from-home is

here to stay: Call for flexibility in post-

pandemic work policies,” J. Syst. Softw.,

vol. 195, Jan. 2022, Art. no. 111552,

doi: 10.1016/j.jss.2022.111552.

	14.	M. Dorner et al., “Only time will

tell: Modelling information diffu-

sion in code review with time-varying

hypergraphs,” in Proc. 16th ACM/

IEEE Int. Symp. Empirical Softw.

Eng. Meas. (ESEM), Helsinki, Fin-

land: Association for Computing

Machinery, 2022, pp. 195–204, doi:

10.1145/3544902.3546254.

https://www.oecd.org/tax/addressing-the-tax-challenges-of-the-digital-economy-action-1-2015-final-report-9789264241046-en.htm
https://www.oecd.org/tax/addressing-the-tax-challenges-of-the-digital-economy-action-1-2015-final-report-9789264241046-en.htm
https://www.oecd.org/tax/addressing-the-tax-challenges-of-the-digital-economy-action-1-2015-final-report-9789264241046-en.htm
https://www.oecd.org/tax/addressing-the-tax-challenges-of-the-digital-economy-action-1-2015-final-report-9789264241046-en.htm
https://www.oecd.org/tax/addressing-the-tax-challenges-of-the-digital-economy-action-1-2015-final-report-9789264241046-en.htm
https://www.oecd.org/tax/transfer-pricing/oecd-transfer-pricing-guidelines-for-multinational-enterprises-and-tax-administrations-20769717.htm
https://www.oecd.org/tax/transfer-pricing/oecd-transfer-pricing-guidelines-for-multinational-enterprises-and-tax-administrations-20769717.htm
https://www.oecd.org/tax/transfer-pricing/oecd-transfer-pricing-guidelines-for-multinational-enterprises-and-tax-administrations-20769717.htm
https://www.oecd.org/tax/transfer-pricing/oecd-transfer-pricing-guidelines-for-multinational-enterprises-and-tax-administrations-20769717.htm
https://www.oecd.org/tax/transfer-pricing/oecd-transfer-pricing-guidelines-for-multinational-enterprises-and-tax-administrations-20769717.htm

	143_41ms04-dorner-3346646

